FFT Thermoelastic Solutions for Moving Heat Sources

Author:

Ju Y.1,Farris T. N.1

Affiliation:

1. School of Aeronautics and Astronautics, Purdue University, 1282 Grissom Hall, West Lafayette, IN 47907-1282

Abstract

An analytical frequency domain solution is obtained using the spatial Fourier transform for thermal and thermoelastic fields due to an arbitrary heat source or thermal distribution moving at constant speed over the surface of an insulated, traction free elastic half space. Conversions between the space and frequency domains for the input and output are performed efficiently and robustly using FFT techniques. The method is validated by comparison to the analytical result for the moving line heat source in which it is shown that numerical evaluation of the analytical solution is problematic for large speeds or distances from the heat source. The utility of the method is illustrated on the constant patch moving heat source and discretely distributed multiple heat sources known as the “hot spot” problem. It is shown, through several examples, that the effect of hot spots on surface displacement and tangential stress is small. Finally, this conclusion is generalized by quantifying the frequency domain solution for the moving heat source problem as a low pass filter.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3