The Influence of Secondary Flows Near the Endwall and Boundary Layer Disturbance on Convective Transport From a Turbine Blade

Author:

Goldstein R. J.1,Wang H. P.1,Jabbari M. Y.1

Affiliation:

1. University of Minnesota, Minneapolis, MN

Abstract

A naphthalene sublimation technique is used to investigate convective transport from a simulated turbine blade in a stationary linear cascade. In some of the tests undertaken a trip wire is stretched along the span of the blade near the leading edge. The disturbance produced by tripping the boundary layers on the blade near the leading edge causes early boundary layer transition, creates high mass transfer rate on the pressure side and in the laminar flow region on the suction side, but lowers the transfer rate in the turbulent flow region on the suction side. Comparison is made with other heat and mass transfer studies in the two dimensional region far from the endwall and good agreement is found. Near the endwall, flow visualization indicates a strong secondary flow pattern. The impact of vortices initiated near the endwall on the laminar-turbulent transition extends three dimensional effects to about 0.8 chord lengths on the suction side and to about 0.2 chord lengths on the pressure side away from the endwall. The effect of the passage vortex and the new vortex induced by the passage vortex on mass transfer is clearly seen and can be traced along the suction surface of the blade. Close to the endwall the highest mass transfer rate on the suction surface is not found near the leading edge. It occurs at about 27% of the curvilinear distance from the stagnation line to the trailing edge where a strong main flow and the secondary passage flow from the pressure side of the adjacent blade interact. The influences of some small but very intense corner vortices and the passage vortex on mass transfer are also observed on both surfaces of the blade.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3