Local Heat/Mass Transfer Characteristics on a Rotating Blade With Flat Tip in Low-Speed Annular Cascade—Part I: Near-Tip Surface

Author:

Rhee Dong-Ho1,Cho Hyung Hee1

Affiliation:

1. Department of Mechanical Engineering, Yonsei University, Seoul 120-749, Korea

Abstract

The present study focuses on local heat/mass transfer characteristics on the near-tip region of a rotating blade. To investigate the local heat/mass transfer on the near-tip surface of the rotating turbine blade, detailed measurements of time-averaged mass transfer coefficients on the blade surfaces were conducted using a naphthalene sublimation technique. A low speed wind tunnel with a single stage annular turbine cascade was used. The turbine stage is composed of sixteen guide plates and blades with spacing of 34 mm, and the chord length of the blade is 150 mm. The mean tip clearance is about 2.5% of the blade chord. The tested Reynolds number based on inlet flow velocity and blade chord is 1.5×105 and the rotational speed of blade is 255.8 rpm for the design condition. The result at the design condition was compared with the results for the stationary blade to clarify the rotational effect, and the effects of incoming flow incidence angle were examined for incidence angles ranging from −15 to +7deg. The off-design test condition is obtained by changing the rotational speed maintaining a fixed incoming flow velocity. Complex heat transfer characteristics are observed on the blade surface due to the complicated flow patterns, such as flow acceleration, laminarization, transition, separation bubble and tip leakage flow. The blade rotation causes an increase of the incoming flow turbulence intensity and a reduction of the tip gap flow. At off-design conditions, the heat transfer on the turbine rotor changes significantly due to the flow acceleration/deceleration and the incoming flow angle variation.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced cooling performance of blade tip slot cooling: Effect of slot open length;International Communications in Heat and Mass Transfer;2024-11

2. Augmented cooling performance in gas turbine blade tip with slot cooling;International Journal of Heat and Mass Transfer;2023-02

3. Enhancement of blade tip cooling with different position on tip cooling slot;International Journal of Heat and Mass Transfer;2023-01

4. Research on turbine blade squealer tip film holes arrangement and moving shroud;Aerospace Systems;2022-03-28

5. Wake effects on heat transfer from a turbine blade tip with different configurations and its corresponding shroud;International Communications in Heat and Mass Transfer;2021-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3