Effect of Upstream Rotor Vortical Disturbances on the Time-Averaged Performance of Axial Compressor Stators: Part 2—Rotor Tip Vortex/Streamwise Vortex–Stator Blade Interactions

Author:

Valkov T. V.1,Tan C. S.2

Affiliation:

1. Shell International Gas Limited, Shell Center, London SE1 7NA United Kingdom

2. MIT Gas Turbine Laboratory, Cambridge, MA 02139

Abstract

In a two-part paper, key computed results from a set of first-of-a-kind numerical simulations on the unsteady interaction of axial compressor stator with upstream rotor wakes and tip leakage vortices are employed to elucidate their impact on the time-averaged performance of the stator. Detailed interrogation of the computed flowfield showed that for both wakes and tip leakage vortices, the impact of these mechanisms can be described on the same physical basis. Specifically, there are two generic mechanisms with significant influence on performance: reversible recovery of the energy in the wakes/tip vortices (beneficial) and the associated nontransitional boundary layer response (detrimental). In the presence of flow unsteadiness associated with rotor wakes and tip vortices, the efficiency of the stator under consideration is higher than that obtained using a mixed-out steady flow approximation. The effects of tip vortices and wakes are of comparable importance. The impact of stator interaction with upstream wakes and vortices depends on the following parameters: axial spacing, loading, and the frequency of wake fluctuations in the rotor frame. At reduced spacing, this impact becomes significant. The most important aspect of the tip vortex is the relative velocity defect and the associated relative total pressure defect, which is perceived by the stator in the same manner as a wake. In Part 2, the focus will be on the interaction of stator with the moving upstream rotor tip and streamwise vortices, the controlling parametric trends, and implications on design.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Grundlagen der Aerodynamik;Aerodynamik axialer Turbokompressoren;2020

2. Effects of Rotor Tip Blade Loading Variation on Compressor Stage Performance;Journal of Turbomachinery;2017-01-24

3. Numerical investigation of the unsteady flow behaviors in a counter-rotating axial compressor;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2016-01-19

4. Compressor Efficiency Variation With Rotor Tip Gap From Vanishing to Large Clearance;Journal of Turbomachinery;2013-03-25

5. Numerical study on unsteadiness of tip clearance flow and performance prediction of axial compressor;Journal of Mechanical Science and Technology;2012-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3