The Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamics

Author:

Furukawa M.1,Inoue M.1,Saiki K.1,Yamada K.1

Affiliation:

1. Department of Mechanical Science and Engineering, Kyushu University, Fukuoka, 812-8581, Japan

Abstract

The breakdown of tip leakage vortex has been investigated on a low-speed axial compressor rotor with moderate blade loading. Effects of the breakdown on the rotor aerodynamics are elucidated by Navier–Stokes flow simulations and visualization techniques for identifying the breakdown. The simulations show that the leakage vortex breakdown occurs inside the rotor at a lower flow rate than the peak pressure rise operating condition. The breakdown is characterized by the existence of the stagnation point followed by a bubblelike recirculation region. The onset of breakdown causes significant changes in the nature of the tip leakage vortex: large expansion of the vortex and disappearance of the streamwise vorticity concentrated in the vortex. The expansion has an extremely large blockage effect extending upstream of the leading edge. The disappearance of the concentrated vorticity results in no rolling-up of the vortex downstream of the rotor and the disappearance of the pressure trough on the casing. The leakage flow field downstream of the rotor is dominated by the outward radial flow, resulting from the contraction of the bubblelike structure of the breakdown region. It is found that the leakage vortex breakdown plays a major role in characteristic of rotor performance at near-stall conditions. As the flow rate is decreased from the peak pressure rise operating condition, the breakdown region grows rapidly in the streamwise, spanwise, and pitchwise directions. The growth of the breakdown causes the blockage and the loss to increase drastically. Then, the interaction of the breakdown region with the blade suction surface gives rise to the three-dimensional separation of the suction surface boundary layer, thus leading to a sudden drop in the total pressure rise across the rotor.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3