Experimental and Numerical Investigations on Fabrication of Surface Microstructures Using Mask Electrolyte Jet Machining and Duckbill Nozzle

Author:

Wu Ming1,Hazak Arshad Muhammad2,Kumar Saxena Krishna2,Reynaerts Dominiek2,Guo Zhongning3,Liu Jiangwen3

Affiliation:

1. Department of Mechanical Engineering; Department of Computer Science, KU Leuven, 3001 Leuven, Belgium

2. Department of Mechanical Engineering, KU Leuven, 3001 Leuven, Belgium

3. Guangdong University of Technology College of Mechanical and Electrical Engineering, , Guangzhou 510006 , China

Abstract

Abstract The consistency in the fabrication of microsurface structures on large workpieces remains a challenge for existing production techniques. Mask electrolyte jet machining (MEJM) is a hybrid mask-based electrochemical machining (ECM) process that combines the flexibility of Jet-ECM to flush the electrochemical by-products and the high throughput processing feature of through-mask electrochemical micromachining (TMEMM). In the present study, a duckbill-shaped nozzle is employed in the MEJM for the batch fabrication of microsurface structures which facilitates more uniform current density distribution over the entire machining area, resulting in better consistency. With a larger slit length, the duckbill nozzle will not only cover more processing area but also facilitates more uniform current density distribution over the entire machining area, resulting in a better consistency for batch fabrication. Thresholds of the ratio of slit length to the machining area were derived from a quantitative analysis, namely the efficient threshold and the performance threshold. The slit length of the duckbill nozzle should be at least twice as large as the machining area to wipe out any observable deviation on current density distribution in the machining area. An efficient and high-performance numerical simulation framework with a virtual gap concept is developed for the mask-based ECM processes to simulate microcavity profiles and associated current density distribution. The concept of a virtual gap is proposed to solve the simulation dilemma of elements being consumed in the mask-based ECM process. Quantitative analyses were carried out to study how the virtual gap influences the electric current density distribution in the interelectrode gap. A virtual gap smaller than 100 nm is recommended. Guidelines on how to ensure a smooth electric field transition across the coarse and fine-meshed zones are presented by conducting a quantitative analysis. As an example, this work has successfully fabricated several cavity arrays with different processing parameters. Both the experimental results and the numerical simulation frameworks are easy-to-implement and easy-to-extend for all the mask-based ECM processes.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3