Influence of Glass Transition Temperature of Underfill on the Stress Behavior and Reliability of Microjoints Within a Chip Stacking Architecture

Author:

Chang Jing-Yao12,Huang Shin-Yi3,Lee Chang-Chun4,Chuang Tung-Han2,Chang Tao-Chih5

Affiliation:

1. Industrial Technology Research Institute, No. 195, Sec. 4, Chung-Hsing Road, Chutung, Hsinchu 31040, Taiwan;

2. Institute of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan

3. Industrial Technology Research Institute, No. 195, Sec. 4, Chung-Hsing Road, Chutung, Hsinchu 31040, Taiwan

4. Department of Mechanical Engineering, Research Center for Microsystem Engineering, Chung Yuan Christian University, 200, Chungpei Road, Chungli, Taoyuan 32023, Taiwan

5. Industrial Technology Research Institute, No. 195, Sec. 4 , Chung-Hsing Road, Chutung, Hsinchu 31040, Taiwan e-mail:

Abstract

In this study, the reliability performance of two capillary-type underfill materials with different glass transition temperatures (Tg) and coefficients of thermal expansion (CTE) were assessed for a chip stacking architecture. The microbumps for integrating four chips on a Si interposer were with a pitch size of 20 μm and composed of 5 μm Cu/3 μm Ni/5 μm Sn2.5Ag solder cap. A thermocompressive bonder was used to interconnect the microbumps at 280 °C for 15 s, and the microgaps between the chips and the interposer were then, respectively, sealed by the mentioned underfill materials to form a chip stacking architecture. Then, the reliability characteristics of the test vehicles were evaluated following the preconditioning and temperature cycling test (TCT). Furthermore, a numerical analysis model was established by ansys software to study the stress and strain contours of the microjoints sealed by different underfill materials. It was found that the lifetime of microjoints was highly related to the Tg points of underfills, an interfacial fracture was observed within the microjoints sealed by a lower Tg underfill after temperature cycling because the tensile strength damaged the Sn depletion zone as heated.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3