Floquet Theory for Linear Time-Periodic Delay Differential Equations Using Orthonormal History Functions

Author:

Shaik Junaidvali1,Tiwari Sankalp1,Vyasarayani C. P.1

Affiliation:

1. Mechanical and Aerospace Engineering, Indian Institute of Technology Hyderabad , Sangareddy 502285, India

Abstract

Abstract In the usual approach to determining the stability of a time-periodic delay differential equation (DDE), the DDE is converted into an approximate system of time-periodic ordinary differential equations (ODEs) using Galerkin approximations. Later, Floquet theory is applied to these ODEs. Alternatively, semidiscretization-like approaches can be used to construct an approximate Floquet transition matrix (FTM) for a DDE. In this paper, we develop a method to obtain the FTM directly. Our approach is analogous to the Floquet theory for ODEs: we consider one polynomial basis function at a time as the history function and stack the coefficients of the corresponding DDE solutions to construct the FTM. The largest magnitude eigenvalue of the FTM determines the stability of the DDE. Since the obtained FTM is an approximation of the actual infinite-dimensional FTM, the criterion developed for stability is approximate. We demonstrate the correctness, efficacy and convergence of our method by studying several candidate DDEs with time-periodic parameters and/or delays, and comparing the results with those obtained from the Galerkin approximations.

Funder

Science and Engineering Research Board

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference26 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Driven Approach to Determine Linear Stability of Delay Differential Equations Using Orthonormal History Functions;Journal of Computational and Nonlinear Dynamics;2023-12-20

2. Simple Time-Periodic Delay Can Support Complex Dynamics;International Journal of Bifurcation and Chaos;2023-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3