Platoon Control Under a Novel Leader and Predecessor Following Scheme With the Use of an Advanced Aerodynamic Model

Author:

Köroğlu Hakan1,Mirzaei Maryam2,Falcone Paolo1,Krajnović Siniša2

Affiliation:

1. Department of Signals and Systems, Chalmers University of Technology, Gothenburg 41296, Sweden e-mail:

2. Department of Applied Mechanics, Chalmers University of Technology, Gothenburg 41296, Sweden e-mail:

Abstract

The longitudinal platoon control problem is considered under a leader and predecessor following scheme with a novel velocity-dependent spacing policy. With this spacing policy, the steady-state intervehicle distances increase with increasing cruise velocity and more so for vehicles that are closer to the leader. Since significant changes might be encountered in intervehicle distances during the travel due to the variations in the velocity of the leader, the problem is studied together with a more accurate modeling of aerodynamic effects within a platoon formation. Based on a standard feedback linearization approach, a dynamic output feedback synthesis problem is formulated with two H∞ performance objectives. One of the performance objectives is linked to the string stability of the platoon formation, while the other can be shaped in a way to maintain small spacing errors without aggressive vehicle maneuvers. A synthesis procedure is then outlined based on linear matrix inequality optimization (LMI). The new control scheme is investigated for a three-vehicle platoon by using an advanced aerodynamic model developed based on extensive fluid dynamic simulations. It is observed in this investigation that a desirable platoon operation can be achieved even with a simple aerodynamic model, provided that the controller is designed in a way to ensure good disturbance attenuation. Nevertheless, an accurate modeling of aerodynamic disturbances might be needed especially for the first vehicle after the leader when the cruising velocity varies over a wide range.

Funder

Chalmers tekniska högskola

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3