Prediction and Measurement of Sealing Properties of Joints Between Wavy Metal Surfaces

Author:

Bourniquel Julien12,Lasseux Didier3,Rit Jean-Francois2

Affiliation:

1. CNRS, I2M, UMR5295, Esplanade des Arts et Métiers, Talence Cedex 33405, France;

2. EDF R&D, Avenue des Renardières – Ecuelles, Moret-sur-Loing Cedex 77818, France

3. CNRS, I2M, UMR5295, Esplanade des Arts et Métiers, Talence Cedex 33405, France e-mail:

Abstract

The transmissivity of metal-metal sealing joints is investigated experimentally and compared to predictions obtained by modeling. The focus is laid upon a wavy surface contacting a flat rigid part, representative of a seat-to-plug contact in an internal sealing valve encountered in nuclear power plants for instance. Experimental transmissivities are obtained from water leak-rate and pressure drop measurements carried out on a model ring-shape sample seat holding a controlled wavy defect and pressed against a rigid flat plug with a controlled normal load. The sample seat surface is manufactured by face turning a tubular part under radial stress and waviness is obtained after elastic relaxation. Modeling is performed on a three-dimensional finite element model of the assembly, composed of the plug, the sample seat, and its holder. The upper sample seat surface, in which topography is recorded by confocal microscopy, is reconstructed using a modal decomposition on the basis of vibrational eigenmodes. Its lower surface, in contact with the holder, is considered as perfectly flat or with its own defects. The contact aperture field between the seat and the plug is computed for a given normal load and is used to solve the incompressible Reynolds equation with a boundary element method, yielding the transmissivity. Predicted transmissivities reveal to be in good agreement with experimental data at low clamping loads and are overestimated for larger ones. Defects on the lower surface of the seat are shown to have a significant impact on the seat-to plug contact transmissivity.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3