Residual Deformation of a Hard-Coated Valve Seat Subjected to Thermal Shocks

Author:

Mathieu Jean-Philippe1,Rit Jean-Franc¸ois1,Ferrari Je`roˆme1,Hersant David1

Affiliation:

1. EDF R&D, Moret-sur-Loing, France

Abstract

Most safety related valves in EDF’s nuclear plant must prove their ability to sustain thermal shocks of approximately 240K amplitude. This paper evaluates the simulation of a globe valve tested for thermal shocks. Since the physical test campaign showed inadequate internal sealing, the simulation focuses on the residual deformation of the hard alloy, planar seat, welded on successive body designs. This deformation is the result of the thermal loadings first induced by the welding process, then by fluid flow inside the valve. A chain of 3D simulations successively computes: a welding temperature transient in the body, the resulting strain hardening — especially in the seat vicinity —; temperature transients in the flow and the valve parts, and the resulting strains in the body causing a bump deformation of the seat surface. This end result agrees with measurements on the tested valve specimen. We show that inaccurate results are obtained on simpler assumptions, such as no welding, and we give insights on the dominant effect of the first hot, cold, hot transient over other profiles. Finally, the agreement we obtain on deformation predictions is toned down by an unsatisfactory sealing prediction, as well as the complexity and duration of the simulation chain compared with physical testing.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3