Dynamic Dispersion Coefficient of Solutes Flowing in a Circular Tube and a Tube-Bundle Model

Author:

Meng Xiaoyan1,Yang Daoyong2

Affiliation:

1. Petroleum Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada

2. Petroleum Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada e-mail:

Abstract

Mathematical formulations have been proposed and verified to determine dynamic dispersion coefficients for solutes flowing in a circular tube with fully developed laminar flow under different source conditions. Both the moment analysis method and the Green's function are used to derive mathematical formulations, while the three-dimensional (3D) random walk particle tracking (RWPT) algorithm in a Cartesian coordinate system has been modified to describe solute flow behavior. The newly proposed formulations have been verified to determine dynamic dispersion coefficients of solutes by achieving excellent agreements with both the RWPT results and analytical solutions. The differences among transverse average concentration using the Taylor model with and without dynamic dispersion coefficient and center-of-mass velocity are significant at early times but indistinguishable when dimensionless time (tD) approaches 0.5. Furthermore, compared to solutes flowing in a 3D circular tube, dispersion coefficients of solutes flowing in a two-dimensional (2D) parallel-plate fracture are always larger for a uniform planar source; however, this is not always true for a point source. Solute dispersion in porous media represented by the tube-bundle model is greatly affected by pore-size distribution and increases as standard deviation of pore-size distribution (σ) increases across the full-time scale.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3