Determination of Dynamic Dispersion Coefficient for Solid Particles Flowing in a Fracture With Consideration of Gravity Effect

Author:

Ding Yanan1,Meng Xiaoyan1,Yang Daoyong1

Affiliation:

1. Petroleum Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada

Abstract

AbstractA robust and pragmatic method has been developed and validated to analytically determine dynamic dispersion coefficients for particles flowing in a parallel-plate fracture, in which gravity settling has been considered due to its significant impact on particle flowing behavior. More specifically, a two-dimensional (2D) advection–diffusion equation together with the initial and boundary conditions has been formulated to describe the flow behavior of finite-sized particles on the basis of coupling the Poiseuille flow with vertical settling. Meanwhile, three types of instantaneous source conditions (i.e., point source, uniform line source, and volumetric line source) have been considered. Explicit expressions, which can directly and time-efficiently calculate dynamic dispersion coefficient, have been derived through the moment analysis and the Green’s function method. By performing the simulation based on the random walk particle tracking (RWPT) algorithm, the newly developed model has been verified to determine particle dispersion coefficients agreeing well with those obtained from the RWPT simulations. It is found that the point source is the most sensitive to gravity effect among different source conditions, while the volumetric line source is affected more than the uniform line source. For particle size larger than its critical value, an increased particle size leads to a decreased asymptotical dispersion coefficient for all the source conditions due to the significant gravity effect, while gravity positively affects the dispersion coefficient at early times for the point source condition. In addition, average flow velocity positively affects the dispersion coefficient for all the source conditions, while the associated gravity effect is influenced only at early times for the point source condition.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference69 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3