Investigation on the Stability of Parallel and Oblique Plates as Suppressors of Vortex-Induced Vibration of a Circular Cylinder

Author:

Assi Gustavo R. S.1,Franco Guilherme S.2,Vestri Michaelli S.2

Affiliation:

1. Assistant Professor Department of Naval Architecture and Ocean Engineering, University of São Paulo, São Paulo 05508-030, Brazil e-mail:

2. Department of Naval Architecture and Ocean Engineering, University of São Paulo, São Paulo 05508-030, Brazil

Abstract

Experiments have been carried out with models of free-to-rotate parallel and oblique plates fitted to a rigid section of circular cylinder to investigate the effect of plate length and oblique angle on the stability of this type of vortex-induced vibration (VIV) suppressor. Measurements of the dynamic response and trajectories of motion are presented for models with low mass and damping which are free to respond in the cross-flow and streamwise directions. It is shown that, depending on a combination of some geometric parameters, the devices might not be able to completely suppress VIV for the whole range of reduced velocities investigated. Plates with larger oblique angles turned to be less stable than parallel plates and induced high-amplitude vibrations for specific reduced velocities. Systems may present streamwise vibration due to strong flow separation and reattachment on the outer surface of plates with large oblique angles. Large angles may also increase drag. Experiments with a plain cylinder in the Reynolds number range from 3000 to 20,000 have been performed to serve as reference. Reduced velocity was varied between 2 and 13. Two-dimensional numerical simulation of static systems at Re = 10,000 revealed that complex and fully separated flow regimes exist for almost all investigated cases. There is a good chance that systems with such geometric characteristics will be unstable unless other structural parameters are positively verified.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3