Flow instabilities in the wake of a circular cylinder with parallel dual splitter plates attached

Author:

Wang Rui,Bao Yan,Zhou Dai,Zhu HongboORCID,Ping Huan,Han Zhaolong,Serson DouglasORCID,Xu Hui

Abstract

In this paper, instabilities in the flow over a circular cylinder of diameter $D$ with dual splitter plates attached to its rear surface are numerically investigated using the spectral element method. The key parameters are the splitter plate length $L$, the attachment angle $\unicode[STIX]{x1D6FC}$ and the Reynolds number $Re$. The presence of the plates was found to significantly modify the flow topology, leading to substantial changes in both the primary and secondary instabilities. The results showed that the three instability modes present in the bare circular cylinder wake still exist in the wake of the present configurations and that, in general, the occurrences of modes A and B are delayed, while the onset of mode QP is earlier in the presence of the splitter plates. Furthermore, two new synchronous modes, referred to as mode A$^{\prime }$ and mode B$^{\prime }$, are found to develop in the wake. Mode A$^{\prime }$ is similar to mode A but with a quite long critical wavelength. Mode B$^{\prime }$ shares the same spatio-temporal symmetries as mode B but has a distinct spatial structure. With the exception of the case of $L/D=0.25$, mode A$^{\prime }$ persists for all configurations investigated here and always precedes the transition through mode A. The onset of mode B$^{\prime }$ occurs for $\unicode[STIX]{x1D6FC}>20^{\circ }$ with $L/D=1.0$ and for $L/D>0.5$ with $\unicode[STIX]{x1D6FC}=60^{\circ }$. The characteristics of all the transition modes are analysed, and their similarities and differences are discussed in detail in comparison with the existing modes. In addition, the physical mechanism responsible for the instability mode B$^{\prime }$ is proposed. The weakly nonlinear feature of mode B$^{\prime }$, as well as that of mode A$^{\prime }$, is assessed by employing the Landau model. Finally, selected three-dimensional simulations are performed to confirm the existence of these two new modes and to investigate the nonlinear evolution of the three-dimensional modes.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3