Potential and Viscous Interactions for a Multi-Blade-Row Compressor

Author:

Lee Yu-Tai1,Feng JinZhang2

Affiliation:

1. Naval Surface Warfare Center, Carderock Division, West Bethesda, MD 20817

2. The Pennsylvania State University, University Park, PA 16802

Abstract

A computationally efficient time-accurate vortex method for unsteady incompressible flows through multiple blade row systems is presented. The method represents the boundary surfaces using vortex systems. A local coordinate system is assigned to each independently moving blade row. Blade shed vorticity is determined from two generating mechanisms and convected using the Euler equation. The first mechanism of vorticity generation is a potential mechanism from a nonlinear unsteady pressure-type Kutta condition applied at the blade trailing edges. The second mechanism is a viscous mechanism from a viscous wake vorticity (VWV) model implemented to simulate the viscous shear layers on the blade pressure and suction sides. Two different two-blade-row compressor systems, a rotor/stator (R/S) system and a stator/rotor (S/R) system, were used to investigate the interaction forces on each blade row. Computational results of the potential and viscous interaction forces are presented and compared to measurements. The comparison suggests that the viscous wake interaction accounts for 25–30% of the peak loading for an axial spacing of 10% chord length between the blade rows. The efficient computational method is particularly attractive for blade indexing study. Therefore a three-blade-row rotor/stator/rotor (R1/S/R2) compressor system is used to demonstrate the indexing calculations between the two rotor positions. Resultant forces on each blade row are presented for ten rotor indexing positions and three axial gap sizes for the gaps between R1 and S and between S and R2. The unsteady peak-to-peak force can reach 10–15% of inflow dynamic head for the gap spacing investigated. The minimum-to-maximum variation of the unsteady force can account for 40–50% of averaged unsteady force.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3