A Model for Temperature Rise of Polishing Process Considering Effects of Polishing Pad and Abrasive

Author:

Horng Jeng-Haur1,Jeng Yeau-Ren2,Chen Chun-Liang2

Affiliation:

1. Department of Power Mechanical Engineering, National Huwei Institute of Technology, Huwei, Yunlin 632, Taiwan

2. Department of Mechanical Engineering, National Chung Cheng University, Chia-Yi, Taiwan

Abstract

The contact temperature plays an important role in the polishing process, which essentially is a surface contact abrasion process. This paper reports a contact temperature model to predict the temperature rise of both the abrasive-workpiece and pad-workpiece interfaces in a polishing process. In this analysis, the forces acting on an abrasive particle and an asperity of the pad are derived from a mechanistic analysis of abrasive-workpiece and pad-workpiece contact. Our results elucidate that polishing with a rigid, smooth plate is a special case of our purposed model. Theoretical predictions indicate that the temperature rise of abrasive-workpiece contact increases with an increase in particle size and density of particles, hardness of workpiece, hardness of pad, and with a decrease in thermal conductivity of workpiece. The temperature of pad-workpiece contact increases with an increase in hardness of pad and surface roughness of pad, and with a decrease in thermal conductivity of workpiece. The contact temperature rise of the pad-workpiece interface is independent of the hardness of workpiece. For a metal polishing process, the maximum contact temperature occurs at the pad-workpiece contact point for small abrasive particles and rough polishing pad with high hardness.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3