Vibratory Forcing Functions Produced by Nonuniform Cascades

Author:

Barber T. J.1,Weingold H. D.1

Affiliation:

1. Compressor Group, Pratt and Whitney Aircraft, East Hartford, Conn.

Abstract

A method is developed to predict the steady, two-dimensional incompressible flowfield through tandem cascades or multibody cascade geometries. The technique is adapted from the classical Douglas-Neumann method, in which a superposition of singularities is used to simulate the cascade geometries. The method is used to analyze the self-induced potential field interaction of a stator cascade with a finite thickness strut cascade behind it or integral within it, such as occurs in fan ducts and intermediate cases of large gas-turbine engines. The calculation predicts the magnitude and location of the nonuniform pressure distortion, which would be imposed on an upstream engine component, for a variety of cascade designs. Such a distortion is known to produce resonant stresses in an upstream rotor. Experimental corroboration of the analysis is presented for a cascade operating at M∞ = 0.49. Sensitivity of the distortion pattern to small strut restaggering is calculated and compared to test data.

Publisher

ASME International

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Approach for Simulating Aperiodic Flows due to Geometry Distortions;AIAA Journal;2020-03

2. Radical Guide Vane Design and Optimization;Journal of Propulsion and Power;2018-11

3. Impact of a multi-splitter vane configuration on the losses in a 1.5 turbine stage;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2011-08-05

4. Aerodynamic Analysis of an Innovative Low Pressure Vane Placed in an s-Shape Duct;Journal of Turbomachinery;2011-05-27

5. Experimental investigation of unsteady fan flow interaction with downstream struts;Journal of Propulsion and Power;1987-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3