Higher-Order Stabilized Perturbation for Recursive Eigen-Decomposition Estimation

Author:

Mucchielli Paul1,Bhowmik Basuraj1,Hazra Budhaditya2,Pakrashi Vikram3

Affiliation:

1. Dynamical Systems and Risk Laboratory, School of Mechanical and Materials Engineering, University College Dublin, Dublin D04 V1W8, Ireland

2. Department of Civil Engineering, Indian Institute of Technology, Guwahati 781039, Assam, India

3. Director Dynamical Systems and Risk Laboratory, School of Mechanical and Materials Engineering, University College Dublin, Dublin D04 V1W8, Ireland

Abstract

Abstract Eigen-decomposition remains one of the most invaluable tools for signal processing algorithms. Although traditional algorithms based on QR decomposition, Jacobi rotations and block Lanczos tridiagonalization have been proposed to decompose a matrix into its eigenspace, associated computational expense typically hinders their implementation in a real-time framework. In this paper, we study recursive eigen perturbation (EP) of the symmetric eigenvalue problem of higher order (greater than one). Through a higher order perturbation approach, we improve the recently established first-order eigen perturbation (FOP) technique by creating a stabilization process for adapting to ill-conditioned matrices with close eigenvalues. Six algorithms were investigated in this regard: first-order, second-order, third-order, and their stabilized versions. The developed methods were validated and assessed on multiple structural health monitoring (SHM) problems. These were first tested on a five degrees-of-freedom (DOF) linear building model for accurate estimation of mode shapes in an automated framework. The separation of closely spaced modes was then demonstrated on a 3DOF + tuned mass damper (TMD) problem. Practical utility of the methods was probed on the Phase-I ASCE-SHM benchmark problem. The results obtained for real-time mode identification establishes the robustness of the proposed methods for a range of engineering applications.

Funder

Sustainable Energy Authority of Ireland

Science Foundation Ireland

University College Dublin

Publisher

ASME International

Subject

General Engineering

Reference41 articles.

1. Uber Die Abgrenzung Der Eigenwerte Einer Matrix;Gershgorin;Bull. Acad. Sci. URSS,1931

2. Norms and Exclusion Theorems;Bauer;Numerische Mathematik,1960

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3