A Study on Structural Health Monitoring of a Large Space Antenna via Distributed Sensors and Deep Learning

Author:

Angeletti Federica,Iannelli Paolo,Gasbarri PaoloORCID,Panella MassimoORCID,Rosato Antonello

Abstract

Most modern Earth and Universe observation spacecraft are now equipped with large lightweight and flexible structures, such as antennas, telescopes, and extendable elements. The trend of hosting more complex and bigger appendages, essential for high-precision scientific applications, made orbiting satellites more susceptible to performance loss or degradation due to structural damages. In this scenario, Structural Health Monitoring strategies can be used to evaluate the health status of satellite substructures. However, in particular when analysing large appendages, traditional approaches may not be sufficient to identify local damages, as they will generally induce less observable changes in the system dynamics yet cause a relevant loss of payload data and information. This paper proposes a deep neural network to detect failures and investigate sensor sensitivity to damage classification for an orbiting satellite hosting a distributed network of accelerometers on a large mesh reflector antenna. The sensors-acquired time series are generated by using a fully coupled 3D simulator of the in-orbit attitude behaviour of a flexible satellite, whose appendages are modelled by using finite element techniques. The machine learning architecture is then trained and tested by using the sensors’ responses gathered in a composite scenario, including not only the complete failure of a structural element (structural break) but also an intermediate level of structural damage. The proposed deep learning framework and sensors configuration proved to accurately detect failures in the most critical area or the structure while opening new investigation possibilities regarding geometrical properties and sensor distribution.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3