Affiliation:
1. Department of Mechanical Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208
Abstract
Abstract
The understanding of strength recovery behavior under a dynamic loading environment provides a guidance for optimizing the design of composite structures for in-service applications. Although established for metals, the quantification of strength recovery in carbon fiber-reinforced viscoelastic composites is still an area under active research. This study aims to understand the effects of fatigue loading rates on the damage behaviors of stress-relaxed carbon fiber-based composites. Hence, the time-dependent strength recovery in woven composites is quantified experimentally using two mutually exclusive approaches under identical fatigue loading environments. In the first approach, the strength recovery is quantified by the dissipated non-linearity in Lamb wave propagation due to the damage state of the composite materials. This is quantified and shown coupled with second- and third-order non-linear parameters. In the second approach, ultrasonic acoustic pressure waves are utilized to quantify the fatigue-induced internal stress and the damage accumulation. A comparison of these two approaches leads to the assessment of strength reduction which is experimentally validated with the remaining strength of the specimens.
Subject
Mechanics of Materials,Safety, Risk, Reliability and Quality,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献