Effect of Time-Dependent Strength Recovery of Composite Materials: Quantification Through Higher Order Ultrasonic Non-Linearity Using Lamb Waves

Author:

Patra Subir1,Ahmed Hossain1,Saadatzi Mohammadsadegh1,Banerjee Sourav1

Affiliation:

1. Department of Mechanical Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208

Abstract

Abstract The understanding of strength recovery behavior under a dynamic loading environment provides a guidance for optimizing the design of composite structures for in-service applications. Although established for metals, the quantification of strength recovery in carbon fiber-reinforced viscoelastic composites is still an area under active research. This study aims to understand the effects of fatigue loading rates on the damage behaviors of stress-relaxed carbon fiber-based composites. Hence, the time-dependent strength recovery in woven composites is quantified experimentally using two mutually exclusive approaches under identical fatigue loading environments. In the first approach, the strength recovery is quantified by the dissipated non-linearity in Lamb wave propagation due to the damage state of the composite materials. This is quantified and shown coupled with second- and third-order non-linear parameters. In the second approach, ultrasonic acoustic pressure waves are utilized to quantify the fatigue-induced internal stress and the damage accumulation. A comparison of these two approaches leads to the assessment of strength reduction which is experimentally validated with the remaining strength of the specimens.

Funder

NASA

Publisher

ASME International

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Precursor Damage Quantification in Composite Structures Using Coda Wave Interferometry and Nonlinear Ultrasonics;Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems;2024-07-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3