Hydrodynamic Investigation of a Wafer Rinse Process Through Numerical Modeling and Flow Visualization Methods

Author:

Chen Chia-Yuan1,Panigrahi Bivas1,Chong Kok-Shen2,Li Wei-Hsien2,Liu Yi-Li2,Lu Tsung-Yi1

Affiliation:

1. Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan e-mail:

2. Fab-14 Diffusion Engineering Department 1, Taiwan Semiconductor Manufacturing Company (TSMC), Tainan 741, Taiwan e-mail:

Abstract

In the current semiconductor industrial scenario, wafers are rinsed in an overflow rinsing tank while being mounted on several lifters prior to most of its manufacturing processes. However, a major drawback of this overflow rinsing methodology is that some of the processing fluid stagnates due to the generated vortices in the regions between the side and middle lifters which entrap some of the flushed particles that further adhere and deteriorate the surface of the wafers. In this work, the hydrodynamics of the flow field inside the wafer rinsing tank with this original lifter orientation setup was studied and compared through numerical simulation and flow visualization using particle image velocimetry (PIV) method, and a strong agreement was found between them in terms of velocity calculation. A new lifter orientation setup was initiated and it was evidenced by the numerical simulation that with this new setup, the generated vortices which are situated opposite to the lifters tilting direction can be displaced significantly in terms of magnitude and distribution. This work presents a new wafer cleaning concept which shows its great potentials in improvement and implementation to the current in-line wafer batch fabrication process without modifying the original design of the rinsing tank.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3