In-Phase and Out-of-Phase Multiaxial Fatigue

Author:

Ellyin F.1,Golos K.1,Xia Z.1

Affiliation:

1. Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2G8

Abstract

In this investigation, thin-walled circular cylindrical specimens fabricated from a low alloy pressure vessel steel (ASTM A-516 Gr. 70) were subjected to various multiaxial loading conditions. The tests were conducted under strain-controlled condition, and loading was provided through an axial actuator and internal and external pressure across the specimen wall. Four in-plane strain ratios (ρ = Δεt/Δεa) were tested, and the most damaging case was the equi-biaxial in-plane straining, ρ = 1. For the latter condition, 90 deg out-of-phase loading was also investigated. These tests indicated a dramatic decrease in the number of cycles to failure, Nf, as a result of out-of-phase loading. The influence of the plastic strain path on life is thus clearly demonstrated. It is shown that the total strain energy density, ΔWt = ΔWe+ + ΔWp, correlates with both the in-phase and out-of-phase cyclic tests, and therefore is a proper damage parameter to be used for life predictions. A brief description of how ΔWt can be calculated is given for the case of proportional loading. The predicted results are compared with the experimental data, and the agreement is found to be very good indeed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3