Application of machine learning methods in multiaxial fatigue life prediction
Author:
Affiliation:
1. Faculty of Telecommunications, Computer Science and Electrical Engineering Bydgoszcz University of Science and Technology Bydgoszcz Poland
2. Faculty of Mechanical Engineering Bydgoszcz University of Science and Technology Bydgoszcz Poland
Publisher
Wiley
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1111/ffe.13874
Reference58 articles.
1. Prediction of fatigue life in aircraft double lap bolted joints using several multiaxial fatigue criteria
2. Local stress based fatigue assessment of multiaxially stressed automotive antiroll bars
3. Effect of residual stresses on the fatigue of butt joints using thermal elasto-plastic and multiaxial fatigue theory
4. Experimental accuracy assessment of various high-cycle fatigue criteria for a critical component with a complicated geometry and multi-input random non-proportional 3D stress components
5. Multiaxial fatigue study on steel transversal attachments under constant amplitude proportional and non-proportional loadings
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Hybrid data-driven model for predicting the shear strength of discontinuous rock materials;Materials Today Communications;2024-12
2. Neural network integrated with symbolic regression for multiaxial fatigue life prediction;International Journal of Fatigue;2024-11
3. Physics-informed transfer learning model for fatigue life prediction of IN718 alloy;Journal of Materials Research and Technology;2024-09
4. Physics-informed neural network for creep-fatigue life prediction of Inconel 617 and interpretation of influencing factors;Materials & Design;2024-09
5. Predicting the low‐cycle fatigue life of Ti‐6Al‐4V alloy using backpropagation neural network optimized by the improved dung beetle algorithm;Fatigue & Fracture of Engineering Materials & Structures;2024-08-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3