Predicting the low‐cycle fatigue life of Ti‐6Al‐4V alloy using backpropagation neural network optimized by the improved dung beetle algorithm

Author:

Gao Zihao123,Zhu Changsheng1ORCID,Shu Yafeng23,Wang Shaohui4,Wang Canglong235,Chen Yupeng3

Affiliation:

1. College of Computer and Communication Lanzhou University of Technology Lanzhou China

2. Institute of Modern Physics Chinese Academy of Sciences Lanzhou China

3. Advanced Energy Science and Technology Guangdong Laboratory Huizhou China

4. College of Physics and Electronic Engineering Northwest Normal University Lanzhou China

5. School of Nuclear Science and Technology University of Chinese Academy of Sciences Beijing China

Abstract

AbstractIn this study, we propose an innovative approach that enhances the performance of the backpropagation (BP) neural network in predicting the low‐cycle fatigue life of Ti‐6Al‐4V alloy by improving the dung beetle optimization (DBO) algorithm with the maximin Latin hypercube design (MLHD) strategy. To address the challenges posed by complex geometric components under different temperature conditions, this research employs finite element simulation to expand the limited experimental dataset and utilizes these data to further guide and optimize the MLHD_DBO_BP model. Test results indicate that the proposed MLHD_DBO_BP model significantly outperforms the traditional finite element method (FEM) and other neural network models in terms of fatigue life prediction performance. This research demonstrates the effectiveness of machine learning models that combine experimental and simulation data in predicting the low‐cycle fatigue life of Ti‐6Al‐4V alloy.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3