The Rate (Time)-Dependent Mechanical Behavior of the PMR-15 Thermoset Polymer at Temperatures in the 274–316 °C Range: Experiments and Modeling

Author:

Ryther C. E. C.,Ruggles-Wrenn M. B.1

Affiliation:

1. e-mail:  Department of Aeronautics and Astronautics, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433-7765

Abstract

The inelastic deformation behavior of the PMR-15 neat resin, a high-temperature thermoset polymer, was investigated at temperatures in the 274–316 °C range. The experimental program was designed to explore the influence of strain rate on monotonic loading at various temperatures. In addition, the effects of prior strain rate on relaxation response and on creep behavior following strain-controlled loading were examined at temperatures in the range of interest. Positive, nonlinear strain rate sensitivity is observed in monotonic loading at all temperatures investigated. Both relaxation behavior and creep are profoundly influenced by prior strain rate at all temperatures. The time-dependent mechanical behavior of the PMR-15 polymer is also strongly affected by temperature. The elastic modulus decreases and the departure from quasi-linear behavior is accelerated with increasing temperature. Stress levels in the region of inelastic flow decrease as the temperature increases. The relaxation behavior as well as the creep response is strongly influenced by temperature. The viscoplasticity theory based on overstress for polymers (VBOP) is augmented to model the effects of temperature on the inelastic deformation behavior of PMR-15. VBOP is a unified state variable theory with growth laws for three state variables: the equilibrium stress, the kinematic stress, and the isotropic stress. Based on the experimental findings several VBOP model parameters are developed as functions of temperature. The augmented model is employed to predict the response of the material under both strain- and stress-controlled loading histories at temperatures in the range of interest. Comparison with experimental data demonstrates that the augmented VBOP successfully predicts the inelastic deformation behavior of PMR-15 polymer under various loading histories at temperatures between 274 and 316 °C.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference45 articles.

1. NASA, 2003, “DMBZ Polyimides Provide an Alternative to PMR-15 for High-Temperature Applications,” http://www.grc.nasa.gov/WWW/RT/RT1995/5000/5150c.htm.

2. Nonlinear Viscoelastic Constitutive Model for Thermoset Polymers;ASME J. Eng. Mater. Technol.,2006

3. Nonlinear Viscoelastic Solids;Int. J. Solids. Struct.,2000

4. Free Volume Theory and Nonlinear Thermoviscoelasticity;Polym. Eng. Sci.,1992

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3