Thermomechanical viscoelastic response of a unidirectional graphite/polyimide composite at elevated temperatures using a micromechanical approach

Author:

Sayyidmousavi Alireza1,Bougherara Habiba1,Falahatgar Seyed Reza2,Fawaz Zouheir3

Affiliation:

1. Department of Mechanical and Industrial Engineering, Ryerson University, Canada

2. Department of Mechanical Engineering, University of Guilan, Iran

3. Department of Aerospace Engineering, Ryerson University, Canada

Abstract

In this work, the thermomechanical viscoelastic response of a high temperature polymer matrix composite system made up of T650-35 graphite fibers embedded in PMR-15 resin is studied through a micromechanical model based on the assumptions of simplified unit cell method within a temperature range of 250–300℃ corresponding to aerospace engine applications. The advantage of this particular micromechanical model lies in its ability to give closed-form expressions for the effective viscoelastic response of unidirectional composites as well as each of their constituents. Using the experimental data of the creep behavior of thermostable PMR-15 polyimide, the micromechanical model is first calibrated to account for the effect of temperature. The resulting elastic and viscoelastic responses are found to be in good agreement with the existing experimental data. The validated model is then used to predict the behavior of the composite material under different combinations of thermal and mechanical loadings. The results clearly demonstrate the importance of accounting for the viscoelastic effect of the matrix material as the temperature increases. Current works on modeling temperature-dependent viscoelastic behavior of polymer matrix composites are mainly based on the assumption of thermorheologically simple material. However, through the present approach where the matrix is modeled as a thermorheologically complex material, the effect of temperature on the elastic and viscoelastic response of the composite system can be individually investigated.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3