Measurements of the Effects of Pressure-Gradient History on Separation-Bubble Transition

Author:

Yaras M. I.1

Affiliation:

1. Carleton University, Ottawa, Canada

Abstract

In many boundary-layer situations, particularly in turbomachinery, separation-bubble transition occurs at a local pressure gradient that differs significantly from the values further upstream. Additionally, this upstream history changes substantially from case to case, with the transitioning separation bubble occurring at streamwise positions along the blade chord varying from close vicinity of the leading edge to mid-chord. In the case of low free-stream disturbances, development of instability waves prior to separation would clearly vary as a result of these differences in the history of the boundary layer prior to separation. Measurements are presented to document the effects of pressure gradients that a laminar boundary layer experiences prior to separation on the transition process that follows in the separated region. The boundary layer development was measured on a smooth, flat plate upon which streamwise pressure gradients were imposed by a flexible, contoured wall opposite to the test plate. Only low freestream-turbulence levels were considered to isolate the effects of pressure-gradient history on the transition process. Two Reynolds numbers were considered for each pressure-gradient setting. Measured quantities consisted of velocity and turbulence intensity obtained with a single hot-wire, and of surface pressures. Observed variations in transition onset location with changes in pressure-gradient history provide the basis for further development of current transition prediction schemes.

Publisher

American Society of Mechanical Engineers

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3