Wet Steam Nonequilibrium Condensation Flow-Induced Vibrations of a Nuclear Turbine Blade

Author:

Guo Bing123,Tang Weixiao123

Affiliation:

1. School of Mechanical Engineering, Shandong University, Jinan 250061, China;

2. Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Jinan 250061, China;

3. National Demonstration Center for Experimental Mechanical Engineering Education, Jinan 250061, China e-mail:

Abstract

Condensing flow induced vibration (CFIV) of the rotor blade is a tough problem for designers of nuclear turbines because nonequilibrium condensing flow excitation (NECFE) is hard to be directly modeled. Generally, in design, NECFE is assumed as equilibrium condensing flow excitation (ECFE), of which the pressure fluctuations caused by phase temperature difference (PTD) between gaseous and liquid are ignored. In this paper, a novel method to calculate the equivalent load of NECFE based on the principle of virtual work was proposed. This method could consider the effects of PTD-induced pressure fluctuations by simulating nonequilibrium condensation with ANSYS cfx, and improve computational efficiency. Once the equivalent NECFE load is determined, CFIV of the rotor blade, which was modeled as a pretwisted asymmetric cantilever beam, can then be predicted by the finite element method (FEM). Additionally, to estimate the effects of PTD-induced pressure fluctuations, comparisons between NECFE and ECFE as well as their induced vibrations were presented. Results show that PTD in nucleation area could change the position and type of shock waves, restructure the pressure distribution, as well as enhance the pressure fluctuations. Compared with ECFE, the frequency ingredients and amplitude of the equivalent NECFE load and its induced vibrations are increased. Specifically, the amplitude of the equivalent NECFE load is increased by 9.38%, 15.34%, and 7.43% in the tangential component, axial component, and torsion moment. The blade vibration responses induced by NECFE are increased by 11.66% and 19.94% in tangential and axial.

Funder

Department of Science and Technology of Shandong Province

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3