Stability Prediction of the Nuclear Turbine Blades During Wet Steam Nonequilibrium Condensation Process

Author:

Guo Bing1,Tang Weixiao1

Affiliation:

1. School of Mechanical Engineering, Shandong University, Jinan 250061, China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Jinan 250061, China e-mail:

Abstract

Stability of the nuclear turbine blades is difficult to be accurately predicted because the wet steam load (WSL) as well as its induced equivalent damping and stiffness during nonequilibrium condensation process (NECP) is hard to be directly calculated. Generally, in design, NECP is assumed as equilibrium condensation process (ECP), of which the two-phase temperature difference (PTD) between gaseous and liquid is ignored. In this paper, a novel method to calculate the WSL-induced equivalent damping and equivalent stiffness during NECP based on the combined microperturbation method (MPM) and computational fluid dynamics method (CFDM) was proposed. Once the WSL-induced equivalent damping and equivalent stiffness are determined, the stability of the blade-WSL system, of which the blade was modeled by a pretwisted airfoil cantilever beam, can then be predicted based on the Lyapunov's first method. Besides, to estimate the effects of PTD, comparisons between the WSL-induced equivalent damping and equivalent stiffness as well as the unstable area during NECP and ECP were presented. Results show that the WSL-induced equivalent damping and equivalent stiffness during NECP are more sensitive to the inlet boundary due to the irreversible heat transfer caused by PTD during NECP. Accordingly, the unstable area during NECP is about three times larger than during ECP.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3