Brush Seals Used in Steam Environments: Chronological Wear Development and the Impact of Different Seal Designs

Author:

Raben M.1,Friedrichs J.1,Flegler J.2,Helmis T.2

Affiliation:

1. TU Braunschweig, Braunschweig, Germany

2. Siemens AG, Mülheim a. d. Ruhr, Germany

Abstract

During the last decades a large effort has been made to continuously improve turbomachine efficiency. Besides the optimization of the primary flow path, also the secondary flow losses have been reduced considerably, due to the use of more efficient seals. Brush seals, as a compliant contacting filament seal, have become an attractive alternative to conventional labyrinth seals in the field of aircraft engines as well as in stationary gas and steam turbines. The aim of today’s research related to brush seals is to understand the characteristics and their connections, in order to be able to make performance predictions, and to ensure the reliability over a defined operating period. It is known that inevitable frictional contacts lead to an abrasive wear on the rotor side as well as on the bristle side. The wear situation is essentially influenced by the resulting contact force at the seal-to-rotor interface during the operating time. This contact force depends on the seal’s blow down capability, which is mainly determined by the geometrical design of the bristle pack, e.g. the axial inclination of the investigated seal design, in combination with the design and material of the surrounding parts, as well as the thermal boundary conditions. For realistic investigations with representative circumferential velocities the TU Braunschweig operates a specially developed steam test rig which enables live steam investigations under varying operating conditions up to 50 bar and 450 °C. Wear measurements and the determination of seal performance characteristics, such as blow down and bristle stiffness, were enabled by an additional test facility using pressurized cold air up to 8 bar as working fluid. This paper presents the chronological wear development on both rotor and seal side, in a steam test lasting 25 days respectively 11 days. Interruptions after stationary and transient intervals were made in order to investigate the wear situation. Two different seal arrangements, a single tandem seal and a two-stage single seal arrangement, using different seal elements were considered. The results clearly show a continuous wear development and that the abrasive wear of the brush seal and rotor is mainly due to the transient test operation, particularly by enforced contacts during shaft excursions. Despite the increasing wear to the brushes, all seals have shown a functioning radial-adaptive behavior over the whole test duration with a sustained seal performance. Thereby, it could be shown that the two-stage arrangement displays a load shift during transients, leading to a balanced loading and unloading status for the two single brush seals. From load sharing and in comparison with the wear data of the tandem seal arrangement, it can be derived that the two-stage seal is less prone to wear. However, the tandem seal arrangement, bearing the higher pressure difference within one configuration, shows a superior sealing performance under constant load, i.e. under stationary conditions.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Brush Seal Frictional Heat Generation—Test Rig Design and Validation Under Steam Environment;Journal of Engineering for Gas Turbines and Power;2016-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3