Health Monitoring and Degradation Prognostics in Gas Turbine Engines Using Dynamic Neural Networks

Author:

Vatani A.1,Khorasani K.1,Meskin N.2

Affiliation:

1. Concordia University, Montreal, QC, Canada

2. Qatar University, Doha, Qatar

Abstract

In this paper two artificially intelligent methodologies are proposed and developed for degradation prognosis and health monitoring of gas turbine engines. Our objective is to predict the degradation trends by studying their effects on the engine measurable parameters, such as the temperature, at critical points of the gas turbine engine. The first prognostic scheme is based on a recurrent neural network (RNN) architecture. This architecture enables ONE to learn the engine degradations from the available measurable data. The second prognostic scheme is based on a nonlinear auto-regressive with exogenous input (NARX) neural network architecture. It is shown that this network can be trained with fewer data points and the prediction errors are lower as compared to the RNN architecture. To manage prognostic and prediction uncertainties upper and lower threshold bounds are defined and obtained. Various scenarios and case studies are presented to illustrate and demonstrate the effectiveness of our proposed neural network-based prognostic approaches. To evaluate and compare the prediction results between our two proposed neural network schemes, a metric known as the normalized Akaike information criterion (NAIC) is utilized. A smaller NAIC shows a better, a more accurate and a more effective prediction outcome. The NAIC values are obtained for each case and the networks are compared relatively with one another.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of the Condition of a Gas Turbine System. 3. Using Machine Learning;Russian Engineering Research;2024-04

2. A comparative study of data-driven and physics-based gas turbine fault recognition approaches;Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability;2021-01-28

3. Development of Reliable NARX Models of Gas Turbine Cold, Warm, and Hot Start-Up;Journal of Engineering for Gas Turbines and Power;2018-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3