A comparative study of data-driven and physics-based gas turbine fault recognition approaches

Author:

Pérez-Ruiz Juan Luis1ORCID,Loboda Igor2,González-Castillo Iván2ORCID,Pineda-Molina Víctor Manuel2,Rendón-Cortés Karen Anaid2,Miró-Zárate Luis Angel2

Affiliation:

1. Universidad Nacional Autónoma de México, Unidad de Alta Tecnología, Juriquilla, Querétaro, México

2. Instituto Politécnico Nacional, Escuela Superior de Ingenieréa Mecánica y Eléctrica, Unidad Culhuacán, Ciudad de México, México

Abstract

The present paper compares the fault recognition capabilities of two gas turbine diagnostic approaches: data-driven and physics-based (a.k.a. gas path analysis, GPA). The comparison takes into consideration two differences between the approaches, the type of diagnostic space and diagnostic decision rule. To that end, two stages are proposed. In the first one, a data-driven approach with an artificial neural network (ANN) that recognizes faults in the space of measurement deviations is compared with a hybrid GPA approach that employs the same type of ANN to recognize faults in the space of estimated fault parameter. Different case studies for both anomaly detection and fault identification are proposed to evaluate the diagnostic spaces. They are formed by varying the classification, type of diagnostic analysis, and deviation noise scheme. In the second stage, the original GPA is reconstructed replacing the ANN with a tolerance-based rule to make diagnostic decisions. Here, two aspects are under analysis: the comparison of GPA classification rules and whole approaches. The results reveal that for simple classifications both spaces are equally accurate for anomaly detection and fault identification. However, for complex scenarios, the data-driven approach provides on average slightly better results for fault identification. The use of a hybrid GPA with ANN for a full classification instead of an original GPA with tolerance-based rule causes an increase of 12.49% in recognition accuracy for fault identification and up to 54.39% for anomaly detection. As for the whole approach comparison, the application of a data-driven approach instead of the original GPA can lead to an improvement of 12.14% and 53.26% in recognition accuracy for fault identification and anomaly detection, respectively.

Funder

consejo nacional de ciencia y tecnología

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3