Numerical Modeling of an Aero-Engine Bearing Chamber Using the Meshless Smoothed Particle Hydrodynamics Method

Author:

Wieth Lars1,Lieber Christian1,Kurz Wolfram1,Braun Samuel1,Koch Rainer1,Bauer Hans-Jörg1

Affiliation:

1. Karlsruhe Institut für Technologie, Karlsruhe, Germany

Abstract

The prediction of the two-phase flow in an aero-engine bearing chamber using the meshless Lagrangian Smoothed Particle Hydrodynamics (SPH) method is presented in this paper. The prediction of the prevailing flow types, like shear-driven wallfilms, droplet-wall- and droplet-film-interactions require an accurate numerical method, which is robust and efficient. Therefore, a code based on the SPH method was developed and validated to numerically predict such technical relevant multi-phase flows in gas turbines. The simulations to be presented in this paper are focused on an aero-engine bearing chamber configuration, which was experimentally investigated previously. For time saving reasons, the bearing chamber is modeled as two-dimensional problem. This requires special boundary conditions for the oil- and sealing-air flow inlet and outlet, which must physically reflect those of the experiments. In the experiments different operating regimes at different boundary conditions could be identified. The major objective of the simulations is to investigate if those different flow regimes can be captured by the numerical method. The simulations do reproduce the different flow regimes highly accurate and demonstrate the ability of this new approach.

Publisher

American Society of Mechanical Engineers

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3