Research on Oil–Gas Two-Phase Flow Characteristics and Improvement of Aero-Engine Bearing Chamber

Author:

Ren Guozhe1,Li Yanpeng1,Zhao Huan1,Yan Yang1,Xu Wenfeng1ORCID,Sun Dan1

Affiliation:

1. Liaoning Key Lab of Advanced Test Technology for Aerospace Propulsion System, Shenyang Aerospace University, Shenyang 110136, China

Abstract

In order to study the oil–gas two-phase flow characteristics of an aero-engine bearing chamber and improve the scavenge effect of lubricating oil, the two-phase flow solution model of a bearing chamber based on the Euler–Euler method was established. Three improvement schemes were proposed for the ventilation structure and scavenge structure of the bearing chamber. The flow characteristics and scavenge characteristics of a conventional bearing chamber and three improvement schemes under different working conditions were analyzed in depth. The results show that after the conventional bearing chamber ventilation structure is embedded (Embed) and improved, with the increase in the embedding depth, the oil in the cavity is further blocked in the cavity, the amount of oil flowing out from the vent is further reduced, and the scavenge efficiency is further improved. After the slope improvement of the scavenge structure of the conventional bearing chamber, due to the increase in the depth of the oil return groove, the drag effect of the air shear force in the cavity on the oil in the oil return groove is further weakened, and the oil accumulation area on the right side of the scavenge port is further suppressed. The volume fraction of the oil in the cavity is further reduced, and the scavenge efficiency is further improved. The combined improvement scheme (ES) can take into account the advantages of embedding and slope improvement schemes, and further improve the scavenge efficiency. Compared to the conventional bearing chamber, when the oil flow rate is 200 L/h and the speed is 15,000 r/min, the oil return efficiency of the embedded (h = 12 mm), slope (l = 56 mm) and combined improvement schemes are increased by 20.19%, 13.43%, and 37.94%, respectively.

Funder

National Natural Science Foundation of China

Liaoning Revitalization Talents Program

Natural Science Foundation of Liaoning province

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3