Causation Entropy Identifies Sparsity Structure for Parameter Estimation of Dynamic Systems

Author:

Kim Pileun1,Rogers Jonathan2,Sun Jie3,Bollt Erik4

Affiliation:

1. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

2. Assistant Professor George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

3. Assistant Professor Department of Mathematics, Clarkson University, Potsdam, NY 13699

4. Professor Department of Mathematics, Clarkson University, Potsdam, NY 13699

Abstract

Parameter estimation is an important topic in the field of system identification. This paper explores the role of a new information theory measure of data dependency in parameter estimation problems. Causation entropy is a recently proposed information-theoretic measure of influence between components of multivariate time series data. Because causation entropy measures the influence of one dataset upon another, it is naturally related to the parameters of a dynamical system. In this paper, it is shown that by numerically estimating causation entropy from the outputs of a dynamic system, it is possible to uncover the internal parametric structure of the system and thus establish the relative magnitude of system parameters. In the simple case of linear systems subject to Gaussian uncertainty, it is first shown that causation entropy can be represented in closed form as the logarithm of a rational function of system parameters. For more general systems, a causation entropy estimator is proposed, which allows causation entropy to be numerically estimated from measurement data. Results are provided for discrete linear and nonlinear systems, thus showing that numerical estimates of causation entropy can be used to identify the dependencies between system states directly from output data. Causation entropy estimates can therefore be used to inform parameter estimation by reducing the size of the parameter set or to generate a more accurate initial guess for subsequent parameter optimization.

Funder

Army Research Office

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3