CEBoosting: Online sparse identification of dynamical systems with regime switching by causation entropy boosting

Author:

Chen Chuanqi1ORCID,Chen Nan2ORCID,Wu Jin-Long1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Wisconsin–Madison 1 , Madison, Wisconsin 53706, USA

2. Department of Mathematics, University of Wisconsin–Madison 2 , Madison, Wisconsin 53706, USA

Abstract

Regime switching is ubiquitous in many complex dynamical systems with multiscale features, chaotic behavior, and extreme events. In this paper, a causation entropy boosting (CEBoosting) strategy is developed to facilitate the detection of regime switching and the discovery of the dynamics associated with the new regime via online model identification. The causation entropy, which can be efficiently calculated, provides a logic value of each candidate function in a pre-determined library. The reversal of one or a few such causation entropy indicators associated with the model calibrated for the current regime implies the detection of regime switching. Despite the short length of each batch formed by the sequential data, the accumulated value of causation entropy corresponding to a sequence of data batches leads to a robust indicator. With the detected rectification of the model structure, the subsequent parameter estimation becomes a quadratic optimization problem, which is solved using closed analytic formulas. Using the Lorenz 96 model, it is shown that the causation entropy indicator can be efficiently calculated, and the method applies to moderately large dimensional systems. The CEBoosting algorithm is also adaptive to the situation with partial observations. It is shown via a stochastic parameterized model that the CEBoosting strategy can be combined with data assimilation to identify regime switching triggered by the unobserved latent processes. In addition, the CEBoosting method is applied to a nonlinear paradigm model for topographic mean flow interaction, demonstrating the online detection of regime switching in the presence of strong intermittency and extreme events.

Funder

Wisconsin Alumni Research Foundation

Office of Naval Research

Army Research Office

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Reference120 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3