Optimization of operating parameters of an off-road automotive diesel engine running at highway drive conditions using Response Surface Methodology

Author:

Marri Vinod Babu1,Madhu Murthy K.2,Amba Prasad Rao G.3

Affiliation:

1. National Institute of Technology Warangal Hanamkonda Warangal, telangana 506004 India

2. Department of Mechanical Engineering NIT Campus Warangal, Telangana 506004 India

3. Warangal Warangal, Andhra Pradesh 506004 India

Abstract

Abstract The typical tradeoff between the two major emissions from compression ignition (CI) engines, smoke and oxides of nitrogen, is the unresolved challenge to the researchers. Techniques like engine downsizing, lowering intake oxygen concentration, multiple injections, use of retarded injection timings and higher injection pressures, etc. are widely employed for the alleviation of these harmful emissions. The influence of variation of fuel injection pressure (FIP), boost pressure, pilot injection timing (PIT), pilot injection quantity (PIQ) and main injection timing (MIT) are experimentally investigated in the present work. Mahindra mHawk four-cylinder diesel engine with provisions of a variable-geometry turbocharger (VGT), exhaust gas recirculation (EGR), and common-rail direct injection (CRDi) is chosen for the experimentation. Test runs are conducted at 1750 rpm and 80.3 N.m (4.6 bar bmep) corresponding to highway drive conditions, using 10 % EGR. Response surface methodology is employed for the design of experiments and to analyze the experimental data. Multi-objective response optimization is carried out to optimize engine-operating parameters that give desired performance and engine-out emissions. Confirmatory tests are conducted at design conditions to validate the results predicted by the model. This study reveals that the optimum performance and emission characteristics could be obtained using 120 kPa boost pressure; 61.1 MPa fuel injection pressure; 11.5 % pilot injection quantity with pilot injection at 332 °CA and main injection at 359 °CA.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3