An Automated Machine Learning-Genetic Algorithm Framework With Active Learning for Design Optimization

Author:

Owoyele Opeoluwa1,Pal Pinaki1,Vidal Torreira Alvaro2

Affiliation:

1. Energy Systems Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439

2. Parallel Works Inc., 222 Merchandise Mart Plz., Suite 1212, Chicago, IL 60654

Abstract

Abstract The use of machine learning (ML)-based surrogate models is a promising technique to significantly accelerate simulation-driven design optimization of internal combustion (IC) engines, due to the high computational cost of running computational fluid dynamics (CFD) simulations. However, training the ML models requires hyperparameter selection, which is often done using trial-and-error and domain expertise. Another challenge is that the data required to train these models are often unknown a priori. In this work, we present an automated hyperparameter selection technique coupled with an active learning approach to address these challenges. The technique presented in this study involves the use of a Bayesian approach to optimize the hyperparameters of the base learners that make up a super learner model. In addition to performing hyperparameter optimization (HPO), an active learning approach is employed, where the process of data generation using simulations, ML training, and surrogate optimization is performed repeatedly to refine the solution in the vicinity of the predicted optimum. The proposed approach is applied to the optimization of a compression ignition engine with control parameters relating to fuel injection, in-cylinder flow, and thermodynamic conditions. It is demonstrated that by automatically selecting the best values of the hyperparameters, a 1.6% improvement in merit value is obtained, compared to an improvement of 1.0% with default hyperparameters. Overall, the framework introduced in this study reduces the need for technical expertise in training ML models for optimization while also reducing the number of simulations needed for performing surrogate-based design optimization.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3