Microstructure and Fatigue Property of Ti–6Al–4V by Ultrahigh Frequency Pulse Welding

Author:

Yang Mingxuan1,Zheng Hao2,Qi Bojin2,Yang Zhou3

Affiliation:

1. School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, No. 37, Xueyuan Road, Haidian District, Beijing 100191, China e-mail:

2. School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, No.37, Xueyuan Road, Haidian District, Beijing 100191, China

3. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

Abstract

Butt welding tests of 1.5 mm thickness Ti–6Al–4V were treated by conventional gas tungsten arc welding (C-GTAW) and ultrahigh frequency pulse GTAW (UHFP-GTAW). The low cycle fatigue (LCF) experiments were conducted on the welded joints. The results of fatigue experiment showed that the number of fatigue cycles was increased with UHFP-GTAW. Changes in the microstructure resulting from reduced heat input were expected to enhance the fatigue propagation resistance. The morphology of the martensites in fusion zone was smaller compared to C-GTAW process, and a larger distribution density of basketweave structure was also obtained by UHFP-GTAW. Furthermore, the decreased fatigue crack rate was accompanied as the increased grain boundaries produced by the reduced grain size in fusion zone. Observation of fatigue fractographs revealed that the UHFP-GTAW has obvious slip traces at fatigue initiation sites and more deep secondary cracks in the crack propagation regions associated with the smaller dimples of final fracture zones. The proportion of propagation regions was much larger than C-GTAW. As a result, it can be considered as the representation of the improvement in ductility.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3