Multipoint optimization of an axial turbine cascade using a hybrid algorithm

Author:

Châtel Arnaud1,Verstraete Tom2,Coussement Grégory3

Affiliation:

1. Chaussée de Waterloo, 72 Rhode-saint-Genese, 1640 Belgium

2. Chaussée de Waterloo, 72 B-1640 Rhode-St-Genèse Rhode-St-Genèse, 1640 Belgium

3. Rue di Joncquois 53 Mons, Hainaut 7000 Belgium

Abstract

Abstract This paper presents a multipoint optimization of the LS89 cascade. The objective of the optimization consists in minimizing the entropy losses generated inside the cascade over a predefined operating range. Two aerodynamic constraints are imposed in order to conserve the same performance as the original cascade. The first constraint is established on the outlet flow angle in order to achieve at least the same flow turning as the LS89. The second constraint limits the mass-flow passing through the cascade. The optimization is performed using a hybrid algorithm which combines a classical evolutionary algorithm with a gradient-based method. The hybridization between both methods is based on the Lamarckian approach which consists in incorporating the gradient method inside the loop of the evolutionary algorithm. In this methodology, the evolutionary method allows to globally explore the design space while the gradient-based method locally improves certain designs located in promising regions of the search space. First, the better performance of the hybrid method compared to the performance of an evolutionary algorithm is demonstrated on benchmark problems. Then, the methodology is applied on the LS89 application. The optimization allows to find a new profile which reduces the entropy losses over the entire operating range by at least 9.5 %. Finally, the comparison of the flows computed in the baseline and in the optimized cascades demonstrates that the reduction of the losses is due to a decrease of the entropy generated downstream the trailing edges and within the passages between the optimized blades.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3