Comparing Gradient-Free and Gradient-Based Multi-Objective Optimization Methodologies on the VKI-LS89 Turbine Vane Test Case

Author:

Hottois Romain1,Châtel Arnaud1,Coussement Gregory2,Debruyn Tom3,Verstraete Tom4

Affiliation:

1. von Karman Institute for Fluid Dynamics , Turbomachinery & Propulsion Department, Rhode-Saint-Genèse, Brabant Flamand 1640 , Belgium

2. University of Mons Faculté Polytechnique, Fluides-Machines Department, , Mons, Hainaut 7000 , Belgium

3. von Karman Institute for Fluid Dynamics , Turbomachinery & Propulsion Department, Rhode-Saint-Genèse 1640 , Belgium

4. von Karman Institute for Fluid Dynamics UGent, Department of Electromechanical, Systems and Metal Engineering, Faculty of Engineering and Architecture, , Turbomachinery & Propulsion Department, Rhode-Saint-Genèse 1640 , Belgium

Abstract

Abstract The present paper addresses the multi-objective aerodynamic shape optimization of the two-dimensional LS-89 turbine cascade. The objective is to minimize the entropy generation at subsonic and transonic flow conditions while maintaining the same flow turning. Nineteen design variables are used to parametrize the geometry. The optimization problem is used to compare two major classes of optimization algorithms and at the same time deduce if this problem has multiple local solutions or one global optimum. A first optimization strategy uses a gradient-based Sequential Quadratic Programming (SQP) algorithm. This SQP algorithm allows to directly handle the non-linear constraints during the optimization process. An adjoint solver is used for computing the sensitivities of the flow quantities with respect to the design variables, such that the additional gradient computational cost is nearly independent of the number of design variables. In addition, the same optimization problem is performed with a gradient-free-metamodel assisted-evolutionary algorithm. A comparison of the two Pareto-fronts obtained with both methods shows that the gradient-based approach allows to find the same optimum at a reduced computational cost. Moreover, the results suggest that the considered optimization problem is uni-modal. In other terms, it is characterized by a single optimal solution.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on aerodynamic optimization of turbomachinery using adjoint method;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-01-23

2. Adjoint-Based Design Optimization of a Volute for a Radial Compressor;International Journal of Turbomachinery, Propulsion and Power;2023-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3