Computation of the Instantaneous Frictional Losses of Internal Combustion Engine Components

Author:

Kfoury Giscard A.1,Chalhoub Nabil G.2

Affiliation:

1. Lawrence Technological University, Southfield, MI

2. Wayne State University, Detroit, MI

Abstract

An inverse dynamics scheme, based on a detailed differential-algebraic model of the crank-slider mechanism of a single cylinder internal combustion (IC) engine, is developed for the computation of the instantaneous frictional losses of engine components. The proposed approach requires accurate measurements of the independent and superfluous coordinates of the crank-slider mechanism as well as their time derivatives. This was achieved by implementing a sliding mode observer, previously developed by the authors, to provide the required estimates of the state variables. The aforementioned observer is suitable for use with differential-algebraic nonlinear equations of motion and was shown to be robust to both modeling imprecision and external disturbances. The digital simulation results show the capability of the combined inverse dynamics scheme with the observer in producing good estimates of the instantaneous frictional losses of the various engine components.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3