Control and Experimental Results for Post Stroke Gait Rehabilitation With a Prototype Mobile Medical Exoskeleton

Author:

Swift Tim A.1,Strausser Katherine A.1,Zoss Adam B.2,Kazerooni H.1

Affiliation:

1. University of California, Berkeley, Berkeley, CA

2. Berkeley Bionics, Berkeley, CA

Abstract

Repetitive task-oriented exercises are accepted in traditional gait rehabilitation and have given rise to driven gait orthoses, but both methods suffer from limited rehabilitation time for the patient. The presented device proposes a control strategy and implementation unique for a mobile rehabilitation exoskeleton as well as results from initial subject testing. This anthropomorphically designed device has knee and hip joints that are actuated in the sagittal plane using hydraulic actuators. The presented control strategy allows the user or therapist to directly specify the level of rehabilitation assistance desired between complete machine control and a zero impedance joint. The device was experimentally tested on three chronic stroke patients with noticeable gait improvements based on the metric of joint flexion. Other results of step time and step length are presented that do not demonstrate as clear improvements but these are believed to be a function of the limited patient testing time.

Publisher

ASMEDC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3