Abstract
AbstractThere is increasing interest in control frameworks capable of moving robots from industrial cages to unstructured environments and coexisting with humans. Despite significant improvement in some specific applications (e.g., medical robotics), there is still the need for a general control framework that improves interaction robustness and motion dynamics. Passive controllers show promising results in this direction; however, they often rely on virtual energy tanks that can guarantee passivity as long as they do not run out of energy. In this paper, a Fractal Attractor is proposed to implement a variable impedance controller that can retain passivity without relying on energy tanks. The controller generates a Fractal Attractor around the desired state using an asymptotic stable potential field, making the controller robust to discretization and numerical integration errors. The results prove that it can accurately track both trajectories and end-effector forces during interaction. Therefore, these properties make the controller ideal for applications requiring robust dynamic interaction at the end-effector.
Funder
Engineering and Physical Sciences Research Council
Horizon 2020
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献