Cable Friction Compensation and Rehabilitation Algorithms for a Cable-Driven Human Assistive System

Author:

Bae Joonbum1,Kong Kyoungchul1,Tomizuka Masayoshi1

Affiliation:

1. University of California, Berkeley, Berkeley, CA

Abstract

A cable-driven human assistive system has been developed to separate actuators from a human body. In the system, the assistive torque is transmitted via cables from the actuators to the end-effector which is to be attached on a human joint. The use of cables in flexible tubes allows for users to move freely without carrying the heavy actuators. However, the varying cable friction according to the curvature of the flexible tubes sets a challenge on the precise generation of the desired torque. To generate the desired torque precisely, a hierarchical control scheme is applied to the system. In this paper, the algorithms for determining the desired assistive joint torque and corresponding cable tensions are proposed. To determine the desired assistive torque, a rehabilitation strategy inspired by a potential field is discussed. For corresponding cable tensions, the algorithms for the cable tension controller which considers the varying cable friction as well as a bias for maintaining appropriate cable tensions are proposed. The performance of the proposed controller is verified by experiments.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3