Tool Wear in Cutting Operations: Experimental Analysis and Analytical Models

Author:

Attanasio A.1,Ceretti E.2,Giardini C.3,Cappellini C.4

Affiliation:

1. e-mail:

2. e-mail:  University of Brescia, Via Branze 38, Brescia 25123, Italy

3. University of Bergamo, Via Marconi 5, Dalmine (BG) 24044, Italy e-mail:

4. University of Brescia, Via Branze 38, 25123 Brescia, Italy e-mail:

Abstract

The possibility of predicting the amount of the tool wear in machining processes is an interesting topic for industries, since tool wear affects surface integrity of the final parts and tool life is strictly connected with substitution policy and production costs. The definition of models able to correctly forecast the tool wear development is an important topic in the research field. For this reason in the present work, a comparison between response surface methodology (RSM) and artificial neural networks (ANNs) fitting techniques in tool wear forecasting was performed. For developing these predictive models, experimental values of tool wear, obtained by longitudinal turning operations with variable cutting parameters, were collected. Once selected, the best configuration of the two previously mentioned techniques, the resultant errors with respect to experimental data were estimated and then compared. The results showed that the developed models are able to predict the amount of wear. The comparison demonstrated that ANNs give better approximation than RSM in the prediction of the amount of the flank wear (VB) and of the crater wear (KT) depth. The obtained results are interesting not only from a scientific point of view but also for industries. In fact, it should be possible to implement the best model into a production manager software in order to correctly define the tool change during the lot production.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3