Optimization of Jet Parameters for Minimizing Surface Roughness in Cryogenic Milling of Ti-6Al-4V

Author:

Wang Yongqing1,Han Lingsheng1,Liu Kuo1,Gan Yongquan1,Dai Minghua1,Liu Haibo1

Affiliation:

1. School of Mechanical Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian City 116024, Liaoning Province, China

Abstract

Abstract Cryogenic machining of titanium alloys using the internal cooling method is being identified as an alternative effective process to current practice of machining materials with poor thermal conductivity. The choice of jet parameters is particularly important for improving their machining quality and saving the production cost simultaneously. This research aimed to minimize the surface roughness by optimizing the comprehensive jet parameters in cryogenic milling Ti-6Al-4V. By comparing the cooling capability of liquid nitrogen and gaseous nitrogen, the influence mechanism of nitrogen phase on surface roughness was illuminated. A self-developed cryogenic machine tool with conveying liquid nitrogen through the spindle and tool was specially used to carry out milling experiments. The results indicated that the nitrogen phase had a most significant effect on surface roughness, followed by the pressure while the effect of flowrate was lowest. A lower volume fraction of gas, a higher pressure, and a proper flowrate could produce a lower surface roughness. An optimal combination of jet parameters was ultimately selected as the liquid nitrogen with 45 l/h of flowrate and 0.6 MPa of pressure to obtain the minimum surface roughness at 0.076 μm.

Funder

Changjiang Scholar Program of Chinese Ministry of Education

Dalian Science and Technology Bureau

Department of Science and Technology of Liaoning Province

Ministry of Science and Technology of the People’s Republic of China

National Natural Science Foundation of China

State Key Lab of Digital Manufacturing Equipment and Technology

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3