A Metal Mesh Foil Bearing and a Bump-Type Foil Bearing: Comparison of Performance for Two Similar Size Gas Bearings

Author:

San Andrés Luis12,Abraham Chirathadam Thomas3

Affiliation:

1. Fellow ASME

2. Mechanical Engineering Department, Texas A&M University, College Station, TX 77843-3123

3. Mechanical Engineering Division, Southwest Research Institute®, San Antonio, TX 78228-0510

Abstract

Gas bearings in oil-free microturbomachinery for gas process applications and power generation (<400 kW) must be reliable and inexpensive, ensuring low drag power and thermal stability. Bump-type foil bearings (BFBs) and overleaf-type foil bearings are in use in specialized applications, though their development time (design and prototyping), exotic materials, and excessive manufacturing cost still prevent their widespread usage. Metal mesh foil bearings (MMFBs), on the other hand, are an inexpensive alternative that use common materials and no restrictions on intellectual property. Laboratory testing shows that prototype MMFBs perform similarly as typical BFBs, but offer significantly larger damping to dissipate mechanical energy due to rotor vibrations. This paper details a one-to-one comparison of the static and dynamic forced performance characteristics of a MMFB against a BFB of similar size and showcases the advantages and disadvantages of MMFBs. The bearings for comparison are a generation I BFB and a MMFB, both with a slenderness ratio L/D = 1.04. Measurements of rotor lift-off speed and drag friction at start-up and airborne conditions were conducted for rotor speeds to 70 krpm and under identical specific loads (W/LD = 0.06 to 0.26 bar). Static load versus bearing elastic deflection tests evidence a typical hardening nonlinearity with mechanical hysteresis, the MMFB showing two to three times more material damping than the BFB. The MMFB exhibits larger drag torques during rotor start-up, and shut-down tests though bearing lift-off happens at lower rotor speeds (∼15 krpm). As the rotor becomes airborne, both bearings offer very low drag friction coefficients, ∼0.03 for the MMFB and ∼0.04 for the BFB in the speed range 20–40 krpm. With the bearings floating on a journal spinning at 50 krpm, the MMFB dynamic direct force coefficients show little frequency dependency, while the BFB stiffness and damping increases with frequency (200–400 Hz). The BFB has a much larger stiffness and viscous damping coefficients than the MMFB. However, the MMFB material loss factor is at least twice as large as that in the BFB. The experiments show that the MMFB, when compared to the BFB, has a lower drag power and earlier lift-off speed and with dynamic force coefficients having a lesser dependency on whirl frequency excitation.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference27 articles.

1. Emerging Oil-Free Turbomachinery Technology for Military Propulsion and Power Applications;Valco

2. Barnett, M. A., and Silver, A., 1970, “Application of Air Bearings to High-Speed Turbomachinery,” SAE Paper No. 700720.10.4271/700720

3. Hydrodynamic Analysis of Compliant Foil Bearings With Compressible Air Flow;Peng;ASME J. Tribol.

4. Lee, Y. B., Park, D. J., and Kim, C. H., 2008, “Stability and Efficiency of Oil-Free Turbocharger With Foil Bearings for SUV,” SAE Paper No. 08SFI-0083.

5. Howard, S. A., Bruckner, R. J., DellaCorte, C., and Radil, K. C., 2008, “Preliminary Analysis for an Optimized Oil-Free Rotorcraft Engine Concept,” NASA Paper No. NASA/TM-2008-215064, ARL-TR-4398.

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3