Affiliation:
1. Delft University of Technology, Delft, The Netherlands
Abstract
Compressor impellers for mass-market turbochargers are die-casted and machined with an aim to achieve high dimensional accuracy and acquire specific performance. However, manufacturing uncertainties result in dimensional deviations causing incompatible operational performance and assembly errors. Process capability limitations of the manufacturer can cause an increase in part rejections, resulting in high production cost. This paper presents a study on a centrifugal impeller with focus on the conceptual design phase to obtain a turbomachine that is robust to manufacturing uncertainties. The impeller has been parameterized and evaluated using a commercial computational fluid dynamics (CFD) solver. Considering the computational cost of CFD, a surrogate model has been prepared for the impeller by response surface methodology (RSM) using space-filling Latin hypercube designs. A sensitivity analysis has been performed initially to identify the critical geometric parameters which influence the performance mainly. Sensitivity analysis is followed by the uncertainty propagation and quantification using the surrogate model based Monte Carlo simulation. Finally a robust design optimization has been carried out using a stochastic optimization algorithm leading to a robust impeller design for which the performance is relatively insensitive to variability in geometry without reducing the sources of inherent variation i.e. the manufacturing noise.
Publisher
American Society of Mechanical Engineers
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Robust design of compact axial compressor;International Journal of Micro Air Vehicles;2022-01
2. Uncertainties in Compressor and Aircraft Design;Uncertainty Management for Robust Industrial Design in Aeronautics;2018-07-21